

Privacy Preserving Distributed Data Mining: A Game Theoretic Approach

Kamalika Das*, Hillol Kargupta**

*University of Maryland, Baltimore County

**University of Maryland, Baltimore County & Agnik, LLC

Multi-Party PPDM as Games

- ♦ Computation Strategies: Perform or not perform local computation
- \diamond Communication Strategies: Send/Receive messages to other nodes in the network or not
- Privacy Compromise due to Collusion: Whether or not to be part of a colluding group to reveal others' private data

Illustration: 3-party Secure Sum Computation $z = (z_1 + v_2) \mod N$ $z_1 = (R + v_1) \mod N$ $=(z_1+v_2) \mod N$

- · Each party has an array of n numbers
- Compute n sums without divulging individual numbers
- •Scenario: Sequence of secure sum computations

We can arrange the sites in the following order:

Site worried about $v_1v_2\dots v_{s-k-1}$ v_i $v_{i+1}\dots v_{i+k}$ privacy colluding sites honest sites

k is the number

We have

colluders where v is the total sum of the s values.

Overall utility for classical secure sum computation. The optimal strategy takes a value of k>1.

Overall utility for secure sum computation with punishment strategy. The optimal strategy takes a value of k=1.

Personalized Privacy in Distributed **Environment**

- ♦ Privacy: a social concept
- ♦ Amount of resources vary across users
- ♦ Distributed multi-objective optimization gives parameter values for privacy model
- ♦ Mechanism design to incorporate penalty in protocol

Penalty for Desired Equilibrium

- Centralized Control
 - ♦ Global Synchronization
 - ♦ Trusted Third Party
 - ♦ Auditing Device
- ♦ Distributed Control
 - ♦ Distributed Decision
 - ♦ Keep nodes in the system

Secure Sum with Penalty Algorithm

- Network has n nodes: nodes are *good* (*n-k*) or bad (k). Bad nodes form one colluding group
- Good nodes solve local objective function based on estimated threat, desired privacy and cost constraints to decide on amount of penalty (k').
- To penalize bad nodes, good nodes split their data into $\alpha k'$ parts.
- Bad nodes turn good at end of sum computation if cost is too high.

WORKS FOR REPEATED GAMES

Applications

- Distributed privacy preserving ranking: Application in P2P web advertising
- Distributed privacy preserving feature selection: Application in P2P decision tree induction